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Abstract--Upper and lower bounds on the drag offered to a Newtonian fluid sphere placed in an Ellis model 
fluid in creeping flow have been found using variational principles. For a solid sphere, the bounds are in good 
agreement with those reported by earlier investigators. 

I N T R O D U C T I O N  
The hydrodynamics of the fall of fluid spheres in quiescent non-Newtonian media has been 
studied by many investigators as this situation is encountered in many practical instances, such as 
in the production of penicilin and in treatment of sewage wastes. Simple rheological models, such 
as the power law model, are not nearly as interesting in representing real flow behavior because 
these fail to predict limiting viscosities. The Ellis model is a generally accepted three parameter 
model to describe the rheological behavior of most real fluids. 

Variational principles for the flow of a generalized Newtonian fluid were first developed by 
Johnson (1961) and later by Slattery (1972) and Yoshioka & Adachi (1971). These principles have 
been used (Slattery 1961, 1962, 1972; Hopke & Slattery 1970; Mohan & Venkateswarlu 1974) to 
obtain approximate solutions of the drag offered to a solid sphere. Of special interest is the work 
of Hopke & Slattery (1970) who used the function space approach and presented both upper and 
lower bounds on the drag offered to a solid sphere placed in an Ellis fluid in creeping flow. A 
lower bound for the flow of an Ellis fluid past a fluid sphere was presented by Mohan & 
Venkateswarlu (1974). However, in this analysis the trace of the extra stress tensor was not set to 
zero. 

In the present analysis, both upper and lower bounds on the drag offered to a Newtonian fluid 
sphere placed in an Ellis fluid in creeping flow have been found using variational principles. 

ANALYSIS  
The equations of continuity and motion can be written in tensorial notation as 

Op_ 
aS- -(p v' ).,, [1] 

/ ,gv i+/  ,'x _p.~ 
[2] 

where # is the density, p the pressure, ~- the extra stress tensor, v the velocity and f the body 
force. 
The following assumptions are made: 

1. The flow is steady, axisymmetric and creeping. 
2. The fluid particle is spherical. 
3. The fluid properties are constant. 
4. The rheological behavior of the internal and external fluids are given by 
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where 

r = 2 ~i D (internal), 

2 
z = ~ D (external), [3a,b] 

1 1 {1 + [v(rL/2)] : - I  l [4] 
n-7- ,73 L ~' , ,~ J" 

D represents the rate-of-deformation tensor, ,7i the viscosity of the internal Newtonian fluid, 
the fluidity, r/o the zero shear stress, a and rl/2 the Ellis model parameters and 17~ the second 
invariant of the extra stress tensor. 

The flow being two dimensional and axisymmetric, a stream function ~b can be defined such 
that, in spherical polar coordinate system (R, 0, ~b), 

1 O~b [5] 
v , -  R2sin000'  

1 0O [6] 
vo - R sin 0 OR" 

This definition of the velocity components satisfies the equation of continuity automatically. 
Using [3a], [5] and [6], the equation of motion for the internal fluid becomes 

where 

D'6, =0, [7] 

D '  / 0 2 +  s i n # 0  ( l ~ A ~  z 
= t T r  ~ - W  ~ ',sin o oe / J " 

[8] 

The work function E, the complementary work function E< and the functionals Jv and H~ for 
the flow field are defined as (Slattery 1972) 

fo I1 E = r/dII, [9] 

E~ = ( n'dlL, [10] 
Jo 4n 

E * d V + f  (v-  v*) • ([T- p¢I] • n) dS, [11] 
(s) S-Sv) 

H.=-fv.) E*dV + fs v" ([T-p¢I]*" n)dS, [12] 

where the quantities with superscript asterisk in [11] are obtained form trial velocity profiles that 
satisfy the equation of continuity and prescribed conditions on So where & is that part of the 
bounding surface S on which the velocity is explicitly specified. The quantities with a superscript 
asterisk in [12] are obtained from a trial stress profile that satisfies Cauchy's first law and 
prescribed boundary conditions for stress on S,. V(s) represents the flow domain. It was shown 
by Slattery (1972) that for single phase flows 

J~>~ fv EdV>~H" [13] 
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The energy dissipation rate per unit volume is related to the work function E by 

573 

Inequalities [13] to [15] combine to yield (for a -> 1), 

> 2  2(Jo) ,-  fv, E'dV=fv, t r (¢.Vv),dV_>E(H.) , ,  [16] 

2(J~)o-> 2 EodV tr(~" Vv)o d V -  > 
o o O~ 

x f  v EodV>_a + 1 (n,)o. [17] 
o Ol 

Because of the use of inequality [15] in obtaining inequality [17], only a bound-on-bound is 
obtainable. Since for a >-l, (a + l/ct)-< 2, we have, on combining inequalities [16] and [17], 

2 {(J~), + (J~)o}-> ( t r ( , .  Vv)dV > a  + 1 {(H~)i + (H,)o}. [18] 
. I v  i + Vo O~ 

Inequality [18] gives the bound-on-bound on the energy dissipation rate for the system as a 
whole. 

Velocity principle 
Trial stream functions are chosen in a form that reduce to the known solution for the 

Newtonian case: 

$* = ( C,r 2 + C3r4)(1 - ZE) V~a 2, [19] 

$ , = ( _ 1  2_~r + A,r" * + - ~ ) ( 1 - Z 2 ) V = a  z. [20] 

Equation [19] satisfies the differential equation [7] and the requirement that (v,)* and (re)* remain 
finite as r ~ 0. Equation [20] with or equal to unity represents the flow of a Newtonian fluid past a 
Newtonian fluid sphere. 

The boundary conditions on the flow are 

(v , ) ,=(v , )o=0 at r = l ,  

(re), = (Vo)o at r = 1, [21] 

(r,o), = (z,o)o at r = 1. [22] 

Applying boundary conditions [21], equations [19] and [20] yield 

C1 + C3 = 0, 

A, + A2= 1[2, 

(rA, - A2 - 1 = 2C, + 4C3. [23] 

The boundary condition [22] is solved approximately using Galerkin's method (Finlayson 1972) 

IJ.M.F., VoL 2, Nos. 5/6---G 

tr (~- • Vv) = 2E (Newtonian fluids), [14] 

2E -> tr (~'- Vv) -> a + 1 g (Ellis fluids t~ >_ 1). [15] 
O~ 
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which requires that 
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f_' (l - Z 2) {(r,~), - (r,o)o}l*=, dZ = O. 
I 

[241 

For the trial profiles given by [19] and [20], [24] reduces to the form 

f/ ,  (1_Z2)3/2 [(cr{~ l)(tr-2)A,+6A2 6C3Xe] dZ =0, 7 7s [251 

where the viscosity ratio X~ = r/i/rio and S* is the dimensionless second invariant of the stress 
tensor related to the dimensionless second invariant D* of the rate-of-deformation tensor by 

D* = S*{1 + (N,S*ln)a-l}z/4 [26a] 

and for the trial stream function profile 

D* = x 4 1 6 Z 2 { ( 2  - -  ~r)Alx 1-~ + 3A2x2} 2 

+ (1 - Z2){(cr - 2)(tr - 1)A~x '-~ + 6A2xZ}~/2]. [26b] 

From a macroscopic mechanical energy balance it can be shown that 

V~Fa = ( tr (~- • Vv) d V, [27] 
J v  i+Vo 

where V~ is the free stream velocity and Fd the drag force. Equation [27] can be combined with 
inequality[18] and written in the dimensionless form 

y = CuRe _ 1 ( tr (~'. Vv) d V 
24 6~'a~7o V~ 2 Jr, + v,, 

_< (L, + J~) 
3-~-~a~-~-o-o-~=" [281 

The trial stream functions given by [19] and [20] have five arbitrary constants, four of which 
(A ~, Az, C, and C3) are related to ~r by [23] and [25]. For any value of a, the values of A~, A2, C, and 
C~ are found using [23] and solving [25] by a Newton-Raphson iteration. The value of cr is chosen 
such that the R.H.S. of inequality [28] is a minium. 

The internal fluid is bounded by the spherical interface S, .=,  of radius a with the normal 
radially outward. The external fluid is bounded by the interface So~=,)with the normal radially 
inward, and a sphere So~r==) of radius infinity confining the unbounded fluid. The velocity is 
explicitly specified on this latter surface and therefore, 

S i = ( S  -- S v ) i  = S i ( r=l ) ,  

So = So~ =, + So~=~), [29] 

( S  -- S v ) o  = So(r=l)  

Since v, = v*=0 at the interface, and since vo, v*, Tro and z*o are continuous across the 
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interface, we have from [11] that 

( E * d V + (  Eo*dV. [30] L,+ Lo= 
d V  i dVo 

Inequality [28] therefore becomes 

C~Re< V}/(3~ra~oV®2). Y Ifv, dv + fvo E* d [31] 

Using the definition of the work function E given by [9], it can be shown that for the trial stream 
functions 

x S ' x - '  dx dx = F [321 

where S* is evaluated by solving [261. The minimum of F is found by a Fibonacci search (Wilde 
1%4) on ~r and this gives the upper bound YvB. 

Stress principle 
Trial extra stress tensors are chosen to be 

(frO), = 6C3r(1 Z2) '/2 

(~'oo )* = (z~,)* = 4C3rZ ( ~I,-~ ), [33] 

(rr,)* = -2(70o)*. 

(r~o)*= -AxS( l -  ZZ)'/2 (rlo-~), 

(rrr)*o=--(Cx° + C'x")Z(n°~Va ~), 

O-eo)*=-(Fx° + F'x")Z(~°~Va =), 

('c~)*=-(Ex° + E'x")Z(~°~Va ~). [34] 

Since tr [~-] is zero, [34] requires that 

C+F+E =0, 

C' + F' + E' = 0. [35] 

Further, by substituting the trial stress functions given by [34] into the equation of motion and 
equating 

OxOO (p + P¢ )~ = (P + P¢ )~ [361 

it can be shown that 

E=F, 
E'=F', 
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D= 2, 

C’ = (B - 1)A t F’. [371 

The condition of jump momentum balance requires that the difference in the normal stress be 
related to the interfacial tension. This difference manifests itself as a pressure difference (Happel 
& Brenner 1965). However, the shear stress & is continuous at the interface and therefore from 
[33] and [34] 

A = -6CzXE. ]381 

Combining [28] and inequality [IS] it can be shown that 

y=CdRe= 1 
24 6aun,, V,’ I “, + \,,, ” (’ ’ ‘“I d ’ 

Since v, is zero at the interface, and 7TH and v,, are continuous, [I21 and [29] yield 

+ v . UT - &II* . 4 dS. , 

Inequality [39] therefore becomes 

y-C~Re,~+l 
24 6a 

-;(F-C)- 16C,‘X, -; 

X It & (N,S*“‘)” ‘1 S*x 4d.u dZ] = H. 

1391 

[401 

[411 

The trial extra stress tensors given by 1331 and [34] have ten arbitrary constants. Equations 
[35], [37] and [38] relate seven of these in terms of C,, C and B, which are chosen by the method 
of Rosenbrock (Rosenbrock & Storey 1966) such that the quantity H in inequality [41] is a 
maximum. This gives the lower bound Y,.. 

RESULTS AND DISCUSSION 

In figure I is plotted the variation of the upper and lower bounds with the viscosity ratio X,; 
and indicates that IO-*< XE 4 10’ covers the range from the behavior of a bubble to that of a 
solid sphere. 

Figure 2 presents a plot of the variation of the bounds with the Ellis parameter CY for various 

values of XE. The results of Hopke & Slattery (1970) for a solid sphere are shown for comparison 

with the results of the present investigation for the case of X, = IO’. The upper and lower bounds 

are seen to be quite close to those of Hopke & Slattery. 

The variation of the bounds with cy is shown in figure 3 for viscosity ratio XF = I for various 

values of N,. It is seen that for any N,, the bounds diverge with increasing cy. For N, +O. the 

upper bound tends to the Newtonian value of Y equai to (2 + 3Xr;)/(3 t 3Xe), while the lower 
bound approaches (a t 1)/2a times the Newtonian value. For non-zero values of N,, in the limit 

as (Y + I, the bound approaches half the value of Y for a Newtonian fluid with X = 2X,. since in 

this limit n --+(n0/2). This limit for Y is equal to (I t 3X,)/(3 t 6XF) and is indicated in figure 3 for 

the case X, = 1. 
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Figure 1. Variation of the bounds with the viscosity ratio. 
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Figure 2. Variation of the bounds with the Ellis parameter cr. Comparison with the results of Hopke 8r 
Slattery (1970) for a solid sphere -. -. -. -. upper bound, and - . -. -. -. lower bound. 
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Figure 3. Effect of N, and a on the bounds. 



578 v. MOHAN and D. VENKATESWARLU 
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Figure 4. Asymptotic behavior of the upper bound at large N~ for a = 2. 
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Figure 5. Asymptotic behavior of the lower bound at large N, for a = 1.5. 

It can be shown that for large values of N~ 

Y , Y,, [N,/k/(2)] "-"~/° [421 

where Y, = Ca • Re,/24 is the value of Y for the flow of a power law fluid (n = l /a)  past a solid 
sphere. This asymptotic behavior of the bound at large N~ is shown in figures 4 and 5 for the upper 
bound with a = 2 and Xr = 1 and for the lower bound with a = 1.5 and X~ = 1. 

C O N C L U S I O N S  

(I) The bounds on the drag are close for values of X~ near unity and diverge at higher values 
of a for all values of N,. 

(2) Asymptotic behavior of the bounds indicate that Newtonian values are obtained as N~ ~ 0 
or a ~ 1 and that the results for the flow of a power law fluid past a solid sphere are predicted in 
the limit N,-- ,~.  
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